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1. Introduction 

Often it is necessary to distribute a given number M of discrete entities of the same kind 

among n beneficiaries, in proportion to a numerical characteristic assigned to each of them Vi, 

. This is known as proportional apportionment (APP) problem (Balinski & Young, 

2001; Kohler & Zeh, 2012; Niemeyer & Niemeyer, 2008). The integer character of this problem 

usually causes a certain disproportion of the apportionment {xi, } (Balinski & Young, 

2001; Gallagher, 1991; Karpov, 2008), some beneficiaries being favored at the expense of the 

others. Such favoring leads to the increase of disproportionality of the apportionment. Therefore, 

reducing the favoring in question is one of the basic requirements when is choosing the APP 

method to be applied for apportionments.  

As it is well known, the d’Hondt method (d'Hond, 1878) favors large beneficiaries (with 

larger Vi value) (Gallagher, 1991; Sorescu et al., 2006; Bolun, 2016), and Huntington-Hill 

method (Huntington, 1921) favors the small ones (with smaller Vi value) (Gallagher, 1991; 

Tannenbaum, 2008). But which of the two favors beneficiaries to a larger extent? Preferences, in 

this sense, between methods, can help. Par example, in (Marshall et al., 2002), five APP methods 

are placed „in the order as they are known to favor larger parties over smaller parties”. However, 

the best way is to estimate this property quantitatively. One approach in this aim is proposed in 

(Bolun, 2020). Another, the “total (full) favoring”, based on the definition of favoring of large 

beneficiaries or of the small ones by an APP method done in (Balinski & Young, 2001), is 

examined in (Bolun, 2020). In (Bolun, 2020), it was shown that the frequency of full favoring in 

apportionments, for the widely used Hamilton (Hare) (Hare, 1859), Sainte-Laguë (Webster) 

(Sainte-Laguë, 1910), d’Hondt (Jefferson), Huntington-Hill and Adapted Sainte-Laguë methods, 

is strongly decreasing on n, becoming approx. 0 at n ≥ 710. Aspects of the guaranteed 

generation of Hamilton apportionments, which fully favor small beneficiaries at larger values of 

n, are examined in this paper. 
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2. Essence of favoring of beneficiaries in apportionments 

The essence of favoring of beneficiaries in apportionments is described in such papers as 

(Gallagher, 1991; Sorescu et al., 2006]. From the three notions of favoring of beneficiaries by an 

APP method distinguished in (Bolun, 2020), the following two will be used in this paper: 

a) favoring of a beneficiary in an apportionment; 

b) favoring of small beneficiaries in an apportionment. 

It is considered that a beneficiary i is favored if a larger number xi of entities is 

distributed to him than would be due according to the Vi value, quantitatively if xi > MVi /V, 

where M = x1 + x2 + … + xn and V = V1 + V2 + … + Vn. Of course, the lack of favoring is possible 

only if the equalities ai = MVi/V,  take place; here ai = MVi/V, where z means the 

integer part of the real number z. In practice, such equalities rarely occur and that is why some 

beneficiaries are favored and others, respectively, are disfavored. The notation ΔM =M – (a1 + a2 

+ … + an) will also be used. 

In formalized form, the first, probably, definition of favoring of large beneficiaries or of 

the small ones by an APP method is given in (Balinski & Young, 2001). But the requirements of 

this definition are very strong - no method compliant to them and used in practice is known. At 

the same time, as mentioned in (Bolun, 2021), these conditions can be used to identify the “full 

favoring” of large beneficiaries or of the small ones in particular apportionments. Also, in 

(Bolun, 2020), the requirements of the respective definition in (Balinski & Young, 2001) were 

simplified, reducing considerably the volume of needed calculations for computer simulation 

(see Definition 1). 

Definition 1. In an apportionment, small beneficiaries are fully favored if  

 

 

(1) 

whenever xi > xj, where (i, j) {1, 2, 3, …, n} (Bolun, 2020). 

Usually, in one and the same apportionment some large and some small beneficiaries can 

be favored and, nevertheless, mainly large or, on the contrary, mainly small beneficiaries can be 

favored. Therefore, in (Bolun, 2020) it is proposed to use two different notions: “favoring” of 

large or of small beneficiaries and “full favoring” of large or of small beneficiaries, the second 

being a particular case of the first one. The compliance of an apportionment with requirement (1) 

is referred to “full favoring” of small beneficiaries. The larger notion of „favoring” is used when 

in an apportionment are predominantly favored large beneficiaries or, on the contrary, the small 

ones in sense of (Bolun, 2020). 

In order to identify whether apportionments that fully favor small beneficiaries can be 

obtained when applying the Hamilton APP method, it is necessary to know the compliance 

conditions of this method with requirements (1). 

 

3. Compliance of an apportionment with the Hamilton solution  

The required apportionments must be Hamilton and, at the same time, comply with 

requirements (1). The conditions for the compliance of an apportionment with the solution 

obtained by Hamilton method (Hamilton apportionment) are defined by Statement 1. First, let: Q 

= V/M; Vi = aiQ + ΔVi > 0, ; ΔM = (ΔV1 + ΔV2 + ΔV3 + … + ΔVn)/Q, 1 ≤ l ≤ n – 1 and xi 

> xi+1, . Of course, occur 0 ≤ ΔVi < Q, . 

Statement 1. The necessary conditions for the compliance of an apportionment 

{xi, }, which fully favors small beneficiaries, with the solution obtained by Hamilton 

method are 

 
 

(2) 
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Indeed, the Hamilton method apportionment rule states (Gallagher, 1991; Tannenbaum, 

2008) that in addition to the already apportioned ai entities, , the remained 

unapportioned ΔM = l entities should be apportioned by one to the first beneficiaries with the 

largest ΔVj value. So, taking into account that xi > xi+1, , the relations xi = ai, 

 and xi = ai + 1,  should take place when favoring small 

beneficiaries that can be only if occurs (2). ■ 

It should be mentioned that Statement 1 establishes relationships between beneficiaries of 

two groups, {  and }, but not between beneficiaries within each 

of these groups if n > 2, needed to establish when analyzing the full favoring of small 

beneficiaries according to requirements (1). 

 

4. Compliance of Hamilton apportionments with requirements (1) 

It is well known that overall, on an infinity of apportionments, Hamilton method doesn’t 

favor beneficiaries (Balinski & Young, 2001; Gallagher, 1991; Tannenbaum, 2008). But it can 

be particular Hamilton apportionments which favor small beneficiaries. Moreover, as confirmed 

below, some of such apportionments fully favor small beneficiaries. The respective conditions 

are defined by Statement 2. 

Statement 2. If n > 2 and l = ΔM, the conditions for the compliance of a Hamilton 

apportionment {xi, } with the requirement (1) of full favoring of small beneficiaries, in 

addition to the (2) ones, are 

 

 

(3) 

if 1 = l < n – 1 (Case S1), 

 

 

(4) 

if 1 < l = n – 1 (Case S2) and both, (3) and (4), if 1 < l < n – 1 (Case S3). 

Indeed, one has 0 ≤ ΔVi < Q,  and, because of 1 = l < n – 1, in (3) the relations 

ai+1 > 0,  always occurs. Let’s begin with Case S3, divided into the following 

three subcases: 

S3a) xi = ai, xk = ak, , ; 

S3b) xi = ai, xk = ak + 1, , ; 

S3c) xi = ai + 1, xk = ak + 1, , . 

In Subcase S3a, according to (1) it should be 

 
from where one has 

 

 

(5) 

It is easy to show that requirements (5) are transitive. From (5), one has  

 In the same way one can show that relations 

 occur. Thus, relations (5) are 

transitive and can be replaced by the (3) ones.▼ 
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In Subcase S3b, according to (1) it should be 

 
from where one has ai (ΔVk – Q) < ΔVi (ak + 1). Because of 0 ≤ ΔVk < Q and ΔVi (ak + 1) ≥ 0, the 

requirements ai (ΔVk – Q) < ΔVi (ak + 1),  always take place, 

that’s why Subcase S2b is not specified in Statement 2. ▼ 

In Subcase S3c, according to (1) it should be 

 
from where one has  

 

(6) 

Let’s show that requirements (6) are transitive. From (6), for k = i + 1 one has 

 

 

(7) 

and, respectively, 

 

(8) 

Taking into account (8), requirement (7) can be transformed as follow 

 

  (9) 

So, if relations (7) and (8) take place, than relation (9) occurs, too. The same way, one 

can show that occurs 

 

 (10) 

Thus, requirements (6) are transitive and therefore they can be replaced by the (4) ones. 

▼ 

The proof for Cases S1 and S2, taking into account proves for Subcases S3a and S3c, are 

trivial. ■ 

When generating apportionments which fully favor small beneficiaries, the inequalities  

 

 

(11) 

 

 

(12) 

equivalent to the (3) and (4) ones, are also useful. 

 

5. Generating Hamilton apportionments that fully favor small beneficiaries 
Based on Statements 1 and 3, the AHS algorithm for the generation of Hamilton 

apportionments that fully favor small beneficiaries was elaborated. According to (3), the lower 
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the value of ΔVn–l, the lower the values of ΔVi, . Similarly, according to (4), 

the lower the value of ΔVn, the lower the values of ΔVi, . Taking into 

account these observations and considering V > M and that the value of ΔM is known, in Figure 

1 the basic conceptual steps of the AHS algorithm are shown. 

At Steps 3 and 4 of the AHS algorithm, minimal possible values to ΔVi ≥ 0,  are 

allocated: at Step 3 - to ΔVi ≥ 0,  according to requirement (3) and beginning with 

the value of ΔVn-l > 0; at Step 4 - to ΔVi ≥ 0,  according to requirement (4) and 

beginning with the value of ΔVn > z = max{ΔV1, ΔV2, ΔV3, …, ΔVn-l} because of requirement 

(2). If after these allocations one has ΔM > l, that is ΔV > ΔU, then the solution doesn’t exist.  

Step 3 according to (3)

Step 6 according to (11)

Step 4 according to (4)

Step 5 according to (12)

1 2 3 n – l n – l + 1 n

ΔVi

∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
0

Figure 1. Basic steps of the AHS algorithm. 

z

x

Requirement (2) 

Requirement (2) 

 
Figure 1. Basic steps of the AHS Algorithm. 

Source: elaborated by the author. 

On the contrary, if ΔM < l, that is if ΔV < ΔU, then one has to increase ΔV aiming to 

reach ΔV = ΔU. Because of requirement (4), it is relevant to increase first, maximal possible, the 

values of ΔVi,  beginning with ΔVn-l+1 < Q. This is done at Step 5 according to 

requirement (12). But if at this step the equality ΔV = ΔU is not achieved, then the last possibility 

to increase the value of ΔV is the increase of ΔVi,  values beginning with ΔV1 < x = 

min{ΔVi, } because of requirement (4). This is done at Step 6 according to 

requirement (11).  

It should be mentioned that in Figure 1 a continuous arrow doesn’t reflect the relation 

between the values of ΔVi and ΔVi-1 sizes. It reflects the relation between ΔVi and the respective 

function of:  

1) ΔVi+1 (at Steps 3 and 4), that is ΔVi > f3(ΔVi+1) according to requirement (3) and, 

respectively, the (4) one; 

2) ΔVi-1 (at Steps 5 and 6), that is ΔVi < f4(ΔVi-1) according to requirement (11) and, 

respectively, the (12) one. 

The AHS algorithm in details is the following. 

1. Initial data are: V, n, 1 ≤ l ≤ n – 1, 1 ≤ g ≤ Q/n and xi > xi+1, .  

2. M := x1 + x2 + x3 + … + xn, Q := V/M, ΔU := Ql; ai = xi, ; ai = xi – 1, 

. 
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3. Based on (3), determining the preliminary, minimal possible, values of sizes ΔVi ≥ 0, 

. 

3.1. i := n – l. ΔVi := Qai + 1 – Qai. If i = 1, then go to Step 4. 

3.2. i := i – 1. ΔVi := Qai + ΔVi +1 ai /ai +1 + g – Qai. If ΔVi ≥ Q, then the solution doesn’t 

exist. Stop. 

3.3. If i > 1, then go to Step 3.2.  

4. Based on (4), determining the preliminary, minimal possible, values of sizes ΔVi > 0, 

.  

4.1. z:= max{ΔV1, ΔV2, ΔV3, …, ΔVn-l}; ΔV := ΔV1 + ΔV2 + ΔV3 + … + ΔVn-l. 

4.2. i := n. ΔVi := Qai + z + g – Qai. If ΔVi ≥ Q, then the solution doesn’t exist. Stop. 

4.3. If l = 1, then go to Step 5. 

4.4. i := i – 1. ΔVi := Qai + [ΔVi +1(ai + 1) – Q(ai – ai +1)]/(ai +1 + 1) + g – Qai. If ΔVi ≥ Q, 

then the solution doesn’t exist. Stop. 

4.5. If ΔVi ≤ z, then it is needed to minimally increase ΔVi. ΔVi := Qai + z + g – Qai. If ΔVi ≥ 

Q, then the solution doesn’t exist. Stop. 

4.6. If i > n – l + 1, then go to Step 4.4. 

5. Based on (12), ensuring ΔM = l by maximal possible increasing, if needed, the ΔVi > 0, 

 values. 

5.1. ΔV := ΔV + ΔVn-l+1 + ΔVn-l+2 + ΔVn-l+3 + … + ΔVn. If ΔV > ΔU, then the solution doesn’t 

exist. Stop. 

5.2. If ΔV = ΔU, then the solution is obtained. Go to Step 7. 

5.3. y := ΔU – ΔV, i := n – l + 1. If Q – ΔVi > y, then ΔVi := ΔVi + y and the solution is 

obtained. Go to Step 7. 

5.4. h := ΔVi, ΔVi := Qai + Q – g – Qai, y := y – ΔVi + h. If l = 1, then it is needed to increase 

the values of ΔVi, . Go to Step 6. 

5.5. i := i + 1; h := ΔVi; ΔVi := Qai + [ΔVi -1(ai + 1) + Q(ai -1 – ai)]/(ai-1 + 1) – g – Qai. If ΔVi 

< Q, then: 

5.5.1. If ΔVi > h + y, then ΔVi := h + y and the solution is obtained. Go to Step 7. 

5.5.2. y := y – ΔVi + h and go to Step 5.8. 

5.6. If Q > h + y, then ΔVi := h + y and the solution is obtained. Go to Step 7. 

5.7. ΔVi := Qai + Q – g – Qal; y := y – ΔVi + h. 

5.8. If i < n, go to Step 5.5. 

6. Based on (11), ensuring ΔM = l by the maximal possible increase of the ΔVi ≥ 0, 

 values. 

6.1. x := min{ΔVi, }. i := 1, h := ΔVi. If x > h + y, then ΔVi := h + y and the 

solution is obtained. Go to Step 7. 

6.2. ΔVi := Qai + x – g – Qai. y := y – ΔVi + h.  

6.3. If i = n – l, then the solution doesn’t exist. Stop. 

6.4. i := i + 1, h := ΔVi. ΔVi := min{Qai + x; Qai +ΔVi -1 ai /ai -1 } – g – Qai. If ΔVi > h + y, 

then ΔVi := h + y and the solution is obtained. Go to Step 7. 

6.5. y := y – ΔVi + h and go to Step 6.3. 

7. Determining the Vi,  values. Vi := Qai + ΔVi, . Stop.  

The obtained Vi,  values can be checked by applying the Hamilton method. To 

note, that the affirmations “the solution doesn’t exist” in the AHS algorithm are approximate, but 

very close to reality for g = 1. Parameter g is an integer, which value influences the minimal 

difference among the xi+1/Vi+1 – xi/Vi,  ones: the larger the value of g, the larger the 
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mentioned difference. At the same time, the smaller the value of g, the higher the probability that 

the solution will be obtain. 

Algorithm AHS was implemented in the computer application SIMAP. Examples 1, 2, 3 

and 4 using SIMAP are described below. 

Example 1 regarding the generation of a Hamilton apportionment which fully favors 

small beneficiaries. Initial data: M = 279; n = 20; ΔM = 10; V = 20000; g = 1; the xi,  

values specified in Table 1. Some results of calculations using SIMAP are systemized in Table 1. 

Table 1. Calculations for the apportionment to Example 1 

i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-

7xi/Vi 

1 2156 30 139147 6 1436 20 139276 11 931 13 139635 16 427 6 140515 

2 1940 27 139175 7 1364 19 139296 12 787 11 139771 17 284 4 140845 

3 1796 25 139198 8 1292 18 139319 13 715 10 139860 18 212 3 141509 

4 1652 23 139225 9 1148 16 139373 14 571 8 140105 19 141 2 141844 

5 1580 22 139241 10 1004 14 139442 15 499 7 140281 20 65 1 153846 

Source: elaborated by the author. 

Example 2 regarding the generation of a Hamilton apportionment which fully favors 

small beneficiaries. Initial data are the same as in Example 1 with the only difference that g = 2. 

Some results of calculations using SIMAP are systemized in Table 2. 

Table 2. Calculations for the apportionment to Example 2 

i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-

7xi/Vi 

1 2170 30 138249 6 1440 20 138889 11 930 13 139785 16 423 6 141844 

2 1952 27 138320 7 1367 19 138991 12 785 11 140127 17 280 4 142857 

3 1806 25 138428 8 1294 18 139104 13 712 10 140449 18 208 3 144231 

4 1660 23 138554 9 1149 16 139252 14 568 8 140845 19 137 2 145985 

5 1586 22 138714 10 1004 14 139442 15 495 7 141414 20 34 1 294118 

Source: elaborated by the author. 

Example 3 regarding the generation of a Hamilton apportionment which fully favors 

small beneficiaries. Initial data are the same as in Example 1 with the only difference that g = 3. 

Some results of calculations using SIMAP are systemized in Table 3. 

Table 3. Calculations for the apportionment to Example 3 

i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-

7xi/Vi 

1 2185 30 137300 6 1446 20 138313 11 929 13 139935 16 419 6 143198 

2 1964 27 137475 7 1371 19 138585 12 784 11 140306 17 277 4 144404 

3 1816 25 137665 8 1296 18 138889 13 710 10 140845 18 185 3 162162 

4 1668 23 137890 9 1150 16 139130 14 565 8 141593 19 109 2 183486 

5 1593 22 138104 10 1004 14 139442 15 492 7 142276 20 37 1 270270 

Source: elaborated by the author. 

Example 4 regarding the generation of a Hamilton apportionment which fully favors 

small beneficiaries. Initial data are the same as in Example 1 with the only difference that g = 4. 

Some results of calculations using SIMAP are systemized in Table 4. 

Table 4. Calculations for the apportionment to Example 4 

i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-7xi/Vi  i Vi xi 10-

7xi/Vi 

1 2196 30 136612 6 1450 20 137931 11 928 13 140086 16 407 6 147420 
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2 1973 27 136847 7 1374 19 138282 12 776 11 141753 17 264 4 151515 

3 1824 25 137061 8 1298 18 138675 13 691 10 144718 18 192 3 156250 

4 1675 23 137313 9 1151 16 139010 14 550 8 145455 19 121 2 165289 

5 1599 22 137586 10 1004 14 139442 15 478 7 146444 20 49 1 204082 

Source: elaborated by the author. 

Data of Tables 1-4 were checked – the obtained apportionments are Hamilton ones. At 

the same time, they comply with requirements (1). Thus, they fully favor small beneficiaries. 

Comparing data in Tables 1, 2, 3 and 4, one can see that the obtained values of Vi and 

xi/Vi,  differ. Using different values of g, one can obtain different solutions. 

The minimal difference among the xi+1/Vi+1 – xi/Vi,  ones is equal: to 15 if g 

= 1, to 74 if g = 2, to 175 if g = 3 and to 214 if g = 4. So, it is confirmed the fact that the larger 

the value of g, the larger the mentioned difference. Thus, if it is needed to increase this 

difference, one has to increase the value of g. But the value of g is limited from above by the 

value of Q/n (approximately). In Examples 1-4, one has Q = V/M = 20000/279  71.7 and 

Q/n = 71.7/20 = 4. At the same time, the attempt to obtain the solution at g = 5, was 

unsuccessful. 

 

6. Some properties of parameter g 

As identified in Section 5, the upper limit of the g value depends on ΔM and may be on 

other factors. In Figure 2, the dependence on ΔM of the maximal value of g, gmax, for which it 

was possible to obtain the solution according to the AHS algorithm, is shown; initial data are the 

same as in Examples 1-4, except the values of g and ΔM. Parameter ΔM takes values in the 

interval [1; 19], where 19 = n – 1. The gmax value equal to 0 corresponds to cases where the 

solution was not obtained. 

From Figure 2 one can see that the gmax value is small at small or large values of ΔM and is 

large – at medium values of ΔM in the interval [1; 19], with some mirror symmetry. To extend the 

possible properties of parameter g, were done respective calculations also for other two cases: 

a) M = 227, n = 11, V = 20000 and the values of xi,  equal to those of the first 

11 beneficiaries in Example 1; 

b) M = 127, n = 5, V = 20000 and the values of xi,  equal to those of the first five 

beneficiaries in Example 1. 

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2. Dependence of gmax(AHS) on ΔM.

ΔM

gmax

gmax(AHS) 

 
Figure 2. Dependence of gmax(AHS) on ΔM. 

Source: elaborated by the author. 
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The results for these two cases (Case (a) and Case (b)), obtained using SIMAP, are 

systemized in Table 5. 

Table 5. Dependence of gmax on ΔM for Cases (a) and (b) 

 ΔM 

1 2 3 4 5 6 7 8 9 10 

gmax 
Case a 1 2 4 6 7 7 6 5 3 2 

Case b 14 30 21 12       
Source: elaborated by the author. 

In Case (a), one has Q/n = 20000/(22711)  8.0096 = 9. The maximal value of 

gmax(AHS) is 7, not reaching 9, but relatively close to it. The character of the dependence is 

similar to that in Figure 2, except the fact that for all 1 ≤ ΔM ≤ 10 it exist at list one solution 

(gmax > 0). 

In Case (b), one has Q/n = 20000/(1275)  31.5 = 32. The maximal value of 

gmax(AHS) is 30, not reaching 32, but relatively close to it. The character of the dependence is 

similar to that in Figure 2, except the fact that for all 1 ≤ ΔM ≤ 4 it exist many solutions: 12 ≤ 

gmax(AHS) ≤ 30. 

Based on obtained data, with refer to parameter g one can conclude that: 

1) the larger the value of g, the larger the minimal difference among the xi+1/Vi+1 – xi/Vi, 

 ones; 

2) the maximal value of g, gmax, for which it is possible to obtain the solution according 

to the AHS algorithm, strongly depends on the value of ΔM and can vary from 0 to 

approximately Q/n; 

3) at ones and the same initial data, the gmax(AHS) value is small at small or large values 

of ΔM and is large – at medium values of ΔM in the interval [1; n – 1], with some 

symmetry; 

4) the approximation by Q/n of the upper limit for the gmax value at 1 ≤ ΔM ≤ n – 1 is 

relatively good. 

Finally, as was mentioned above, the use of parameter g aims to increase the value of the 

minimal difference among the xi+1/Vi+1 – xi/Vi,  ones – for the apportionments that 

fully favor small beneficiaries, and (in another research using the AHL algorithm) of the minimal 

difference among the xi/Vi – xi+1/Vi+1,  ones – for the apportionments that fully 

favor large beneficiaries, that is, in both cases, among the i = |xi+1/Vi+1 – xi/Vi|,  

ones. But sometimes it may be of interest to equalize these differences as much as possible, for 

example in order to minimize the value of the sum 

 

 

(13) 

Such a goal can be achieved by some modifications to 6 of the AHS algorithm. 

  

7. Conclusions 

In order to determine Hamilton apportionments which fully favor beneficiaries, the AHS 

algorithms was elaborated. It guarantees the solution (if it exists), regardless of the value of n. 

This algorithm was implemented in the computer application SIMAP. Four examples of 

calculations at n = 20 using SIMAP are described – there were generated four apportionments 

which fully favor small beneficiaries at different values of parameter g. 

All four obtained apportionments fully favor small beneficiaries even if the n value is 

relatively large (n = 20). In this context, it should be noted that in all 25 million variants of initial 

data with n = 20, for which the Vi,  values were generated stochastically at uniform 
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distribution, none of the Hamilton apportionments, obtained using SIMAP (Bolun, 2021), does 

not fully favor the beneficiaries. 

At the same time, it was identified that the results of calculations depends considerably 

not only on the initial data V, n, 1 ≤ ΔM ≤ n – 1 and xi, , but also on the parameter g 

value of the AHS algorithm. It was identified that the higher the g value (1 ≤ g ≤ Q/n), the larger 

the minimal difference among the xi+1/Vi+1 – xi/Vi,  ones. At the same time, the 

maximal value of g, gmax, for which it is possible to obtain the solution according to the AHS 

algorithm, strongly depends on the value of ΔM, being small at small or large values of ΔM and 

large – at medium values of ΔM in the interval [1; n – 1]. 
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