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Abstract: Let M be a complete hyperbolic surface of genus g, with k punctures and n  boundary geodesics. In this paper 

we investigate typical behavior of geodesics for some hyperbolic 2-manifolds, and discuss some extension of those results 

to the case of a arbitrary hyperbolic surfaces(on a closed orientable  hyperbolic surface M of genus  g at least 2, in the 

case of non-compact hyperbolic surface and  for a compact hyperbolic surface with non-empty boundary).  
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This paper focuses on the problem of classification (the behavior) of geodesics on hyperbolic 2 

dimensional manifolds. Geodesics are those curves on the surface that are not geodesically curved. 

Considering their role on surfaces they can be compared to straight lines in plane and they are called 

“the most straight lines” on surface.  One of the main approaches to study of the geometry of 

manifolds and understand its structure is through the investigation of geodesics, the shortest path or 

geodesic between the two points. Behavior of geodesics in hyperbolic surfaces has been a fruitful 

subject of research for many years. Such geodesics are often studied by looking at their lifts in 

covering spaces of the surface. The chaotic behavior of geodesics on surfaces of constant negative 

curvature and finite volume has been known since Hadamard (1898). In this work for the first time 

systematically is described and summarize the results of our study the geometry of behavior of the 

geodesics on hyperbolic manifolds of dimension 2. These results would be considered as an analogue 

of the coding of geodesics on the modular surface in terms of continued fraction expansions. The 

study of global behavior of the geodesics is one of the main topics in geometry and their behavior 

under variations helps us to understand the geometry of hyperbolic manifolds.  

The definitions of geodesic lines in various spaces depend on the particular structure (metric, 

line element, linear connection) on which the geometry of the particular space is based. In the 

geometry of spaces in which the metric is considered to be specified in advance, geodesic lines are 

defined as locally shortest. The local behavior of geodesic curves is similar to that of straight lines in 

Euclidean space. A sufficiently short arc of a geodesic line is the shortest among all rectifiable curves 

with the same ends. Only one geodesic line passes through any point in a given direction.  Families 

of geodesic lines, considered as possible trajectories of motion, form a subject of the theory of 

dynamical systems and ergodic theory. 

Thanks to the development of the new constructive approach, in this paper, the author 

succeeded to receive “in a certain sense” the solution for the behavior of the geodesics in general on 

the hyperbolic manifolds of dimension 2, structure of geodesics and their types. In order to discuss 

the results of this work, it will be necessary to agree on some definitions of the basic concepts. The 
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following terminology will be used regularly throughout this paper. Let be a finite area hyperbolic 

surface. Then  is homeomorphic to a closed surface with finitely many points removed. Each of 

these points called punctures, has special  neighborhoods in  called cusp. A geodesic in a 

hyperbolic manifold is a locally distance - minimising curve, and is said to be simple if it has no 

transverse self-intersections (there-fore it is either an embedded copy of  R or an embedded circle)  

and non simple otherwise. A geodesic on surface  is said to be complete if it is not strictly 

contained in any other geodesic, i.e., it is either closed and smooth, or open and of infinite length in 

both directions. Complete geodesics coincide with those which never intersect . Note that if  

is obtained from a compact surface by removing a finite number of points to form cusps then a 

complete open geodesic on  might tend toward infinity along a cusp. Throughout, we use the term 

geodesic to refer to a complete infinite geodesic; a geodesic ray is a half-infinite ray; finally, a 

geodesic arc is a finite segment lying along some geodesic (which we assume to be closed unless 

otherwise stated). For a hyperbolic surface  some of the geodesics  will come back to the point 

they start and fit in a smooth way. These are called closed geodesics. It ends up that there are finitely 

many closed geodesics of a given lenght (if any). Geodesics on smooth surfaces are the straightest 

and locally shortest curves. A hyperbolic surface is a surface which constant negative curvature. 

Unlike the plane, which is flat, or the sphere which has positive curvature, these surfaces are 

negatively curved. On a hyperbolic surface, some geodesics are infinitely long, like straight lines in 

the plane, but others close up into a loop, like the great circle on a sphere. Two basic properties are 

responsible for their importance: first, that from any point of a manifold there starts a unique geodesic 

in any direction. Second, the length minimization property (connecting two given points on a 

manifold with a locally shortest curves). On smooth surfaces geodesics possess both properties.   

Geodesics on hyperbolic surfaces are briefly discussed in [Balcan V., 2017, p.191].  

 The main objective of the article is to describe the qualitative behavior of the geodesics on 2-

dimensional hyperbolic manifolds. A (closed) hyperbolic surface can be defined either by a 

Riemannian metric of constant negative curvature or (thanks to the uniformization theorem) by a 

quotient of  hyperbolic plane by a discrete group of  isometries, isomorphic to the fundamental group 

of the initial surface, acting properly discontinuously on hyperbolic plane. A hyperbolic surface of 

genus  with  punctures and  holes and with no boundary is said to be of type . Such 

surfaces are said to be of finite type. A standard tool in  the study of compact Reimann surfaces is the 

decomposition into “pairs of pants” (Y pieces). Given a surface of genus , there are  

simple closed pairwise non-intersecting geodesics which partition the surface into  such pieces. 

A Riemann surface of signature  is an oriented, connected surface of genus  with  

boundary components, called boundary geodesics, which is equipped with a metric of constant 

negative curvature. Here by a geodesic we always mean a locally shortest curve.   

We want to describe their global behavior: a) when are geodesics closed ? b) when are the 

dense ? c) quantitatively, how do they wrap around the surface ? These questions admit notably 

precise answers, as we are going to see. Much less is known about the behavior of geodesics on 

hyperbolic surfaces. How do geodesics on the hyperbolic surface behave or how can we determine 

the behavior of a given geodesic on the hyperbolic surface? The qualitative behavior of geodesics on 

even seemingly simple hyperbolic surfaces can be surprisingly complex. A nother method, of 

arithmetic nature, uses continued fraction expansions of the end points of the geodesic at infinity and 

is even older – it comes from the Gauss reduction theory. Introduced to dynamics by E. Artin in a 

1924 paper, this method was used to exhibit dense geodesics on the modular surface. The problem of 
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understanding the geometry and dynamics of geodesics and rays (i.e. distance-minimizing half 

geodesics) on hyperbolic manifolds dates back at least to Artin, who started to study the qualitative 

behavior of geodesics on hyperbolic surfaces. Artin studied these questions by cleverly encoding 

geodesics using continued fractions.  

We investigate in detail the global behavior of the geodesics on the simplest hyperbolic 

surfaces: hyperbolic horn (funnel end), hyperbolic cylinder and parabolic horn (cusp, horn end), or 

parabolic cylinder. The problem of behavior of geodesic is solvable for a hyperbolic surface called 

hyperbolic horn (funnel). A hyperbolic horn (funnel end) is a two-dimensional manifold, obtained from 

the strip between the two parallel straight lines of the hyperbolic (Lobachevsky) plane by matching the 

border lines by shifting (sliding), its axis being parallel to he border lines and beyond the strip between 

them. The funnel, i.e. the factor-space H2
+\Г, is an (open) half of the hyperbolic cylinder. The border 

circumference does not belong to that half and there for the surface of the hyperbolic horn is incomplete. 

The funnel is half of the hyperbolic cylinder, bounded by their closed geodesic. The full funnel continues 

to flare out exponentially and has infinite area. There is a  

Theorem 1. On the funnel the problem of behavior of a geodesic is solvable. 

The theorem is resolved using the affirmations I-IV set out below.  

It is clear that the hyperbolic horn (funnel), i.e. the factor space H2/Г, is the open «half» of the 

cylinder С considered above where the border circumference а' does not belong to that half, 

therefore the funnel is incomplete surface. 

Affirmation I. There are no closed geodesics on the funnel. 

Affirmation II. If the geodesic l on the funnel  М2=Н2
+/Г is defined so that its covering lies 

on a straight line intersecting the line a, then the geodesic l  is infinite without self-intersections and any 

of its points divides it into two rays: one ray of finite length, another ray of infinite length. 

Affirmation III. If the covering l’ for the geodesic l for the funnel M2 is the straight line 

parallel to the line a, then the geodesic l  is infinite, without self-intersections points, and any of its 

points divides it into two congruent rays. 

Affirmation IV. If the covering l’ for the geodesic l is a straight line divergent with the axis of 

shifts, then the geodesic l is infinite and it has only a finite number k of double self-intersection points.  

Here in none of the cases the geodesic was not a closed one, as said in the Affirmation I. 

Therefore, in each of the three possible cases the behavior of geodesic is fully described, and since any 

other cases are impossible, it has been demonstrated that the behavior of geodesic on hyperbolic funnel 

is fully solvable. So, every geodesic curve  on the  hyperbolic horn is of one of the four types or  the 

following types of geodesic on funnel are identified: 1) there are no closed geodesics; 2) there is a 

geodesic of infinite length, without self-intersections points,  and any of its points divides the geodesic 

into two rays: one ray of finite length and another ray of infinite length; 3) there is an infinite  geodesic, 

without self-intersections points and any of its points divides it into two congruent rays; 4) there is an 

infinite geodesic and it has a finite number k of double self-intersection points and they are all divisible 

by 2. The number k of self-intersection points of an examined geodesic is equal to р. 

The problem of behavior of a geodesic on a hyperbolic cylinder is solvable. One may define 

the hyperbolic cylinder as a non-compact two-dimensional manifold obtained from the strip from between 

the two divergent lines of the hyperbolic (Lobachevsky) plane by identifying the divergent border lines 

by shift (sliding), its axis being a common perpendicular for the said border lines, its shift being equal 

to the length of such translation. The factor space H2\Г is a some kind of cylindrical surface 

also called hyperbolic cylinder. The hyperbolic cylinder is the union of two funnels.  
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Theorem 2. On the hyperbolic cylinder С = Ц2=H2/Г the geodesic’s behavior problem is solvable. 

The proof of theorem comes from the affirmations I and II set out below. 

Affirmation I. There are no closed geodesics on the cylinder С (both simple, different from 

the narrow geodesic core of cylinder and non-simple ones). 

This results from the fact that the closed geodesics  correspond to the translation . But such 

translation should transform into itself the straight line а, while this is possible only when the line b is on 

the line а, i.e. it is a translation along the line а. This translation along the line а on a hyperbolic cylinder 

will lie on a geodesic core (the narrowest place of cylinder). It is the only simple close geodesic on 

that surface. 

Affirmation II. If the geodesic’s image intersects the straight line а, such a geodesic is a 

geodesic without self-intersection points, infinite in both directions (at both ends). 

Let us consider the behavior of geodesic on a parabolic cusp (parabolic cylinder). We shall call a 

parabolic horn (cusp) the two-dimensional manifold obtained from the strip from between the two parallel 

lines of the hyperbolic (Lobachevsky) plane by identifying the border lines by horocyclic rotation 

determined by these lines. The parabolic cylinder is a special case (its small end is a cusp, while the 

“horn” end carriers the hyperbolic metric). There appears the 

Theorem 3. The problem of behavior of a geodesic on a horn end (cusp) is solvable. 

The study of universal cover of parabolic cusp demonstrates that: 

1) If the arbitrary straight line с does not cross the obstructing line of the pair 

determining the horocyclic rotation w and identified upon that rotation, the image of the said 

straight line on this surface(cusp) is isometric to the usual straight line of a hyperbolic surface (simple 

infinite length, without self-intersection); 

2) If the image of the geodesic с on the hyperbolic plane H2 is a straight line intersecting the 

said geodesic and if it is different from the obstructing straight line, then the geodesic с is infinite in 

both directions (at both ends) and it has only a finite number k of double self-intersection points. 

In the particular case, both ends of the geodesic can go to the some point at infinity.  

3) There are no closed geodesics on the parabolic cusp, because no translation in the 

group . 

The study of the geodesics on hyperbolic surfaces can be reduced to the study of the curves on 

a hyperbolic pair of pants. Compact hyperbolic surfaces can be seen as an elementary pasting of 

geodesic polygons of the hyperbolic plane. Conversely, cutting such a surface along disjoint simple 

closed geodesics (a partition), one obtains a family of pair of pants (surfaces of signature (0,3)), which 

in turn can be readily cut to obtain a pair of isometric right-angled hexagons. Let M  be a surface and 

let  P  be a pair of pants. We focus on getting the behavior of geodesics on a hyperbolic pair of pants  

P. As a direct consequence we get the behavior of geodesics on any surface M. We do this as follows. 

First, there is a unique way to write P as the union of two congruent right-angled hexagons. Take this 

decomposition (see on Fig.1).    
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Fig. 1  Universal cover of P in  

 

We examining different types of  behaviors exhibited by geodesics on a given pair of hyperbolic 

pants (general, symmetric and generalized) and  study infinite simple geodesic rays and complete 

geodesics Three simple, pairwise non-intersecting bi-infinite geodesics in the hyperbolic pair of 

pants, that each “spiral” towards two different boundary components of pair of pants  (see Fig, 2).     

 
Fig. 2  Curves on pair of pants 

 

We also allow the degenerate case in which one or more of the lenths vanish. We call a 

generalized pair of pants a hyperbolic surface which is a homeomorphic to a sphere with three holes, 

a hole being either a geodesic boundary component or a cusp. Symmetric hyperbolic pairs of pants, 

that is, hyperbolic pair of pants which have three geodesic boundary components of equal lenths. 

For the behaviour of the geodesics on the specified fragments (hyperbolic pants, etc.) it is used 

a certain figure, named in the text of the work the multilateral. The multilateral is obtained from a 

right angle hexagon as follows. We construct a hyperbolic hexagon with right angles on the 

hyperbolic plane . For a certain value  of the radius of the circle, inscribed in the right angle 

triangle, this triangle becomes limited: its vertices become infinitely remote points, and the sides - in 

pairs parallel lines. It is to be noted that these triangles decompose . If we continue to increase 

the radius of the inscribed circle, then the sides of the triangle become pairwise divergent straight 

lines, the vertices - are ideal points and the area of the triangle is infinite. From the hyperbolic 

geometry we have that for given two disjoint geodesics on the plane  with four different end 

points at the infinity (divergent), there is only one geodesic perpendicular to both. But, if from the 

obtained “ beyond the limit” triangle we cut off the "excess" endless pieces with the help of common 

perpendiculars of the pairs of its sides, then we get an equiangular-semi-regular hexagon (see Fig. 

3). All the angles of this hexagon are straight and the sides over one are equal. Symmetric right-

angled hyperbolic hexagons, that is, convex right –angled hyperbolic hexagons having three non-

adjacent edges of equal length.   
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We’ll call the newly appeared sides black, and ,,remnants” of the sides of the original triangle are 

white: than we can say that all the white sides are equal to each other in pairs, and all the black sides 

are also equal pairwise to each other, and the angle between the intersecting white and black sides is 

straight. Thus the resulting hexagon is a Coxeter, and the group generated by reflections in its sides is 

a Coxeter group. But before building all this Coxeterian partition, it is very useful to first make 

reflections only on the black sides of the hexagon and on their images, obtained by such reflections. 

Continuing indefinitely the reflection in these black sides, we get some new kind of regular polygon (it 

would be more accurate to say - the multilateral).  The sides of this ,, multilateral” (without vertices 

and angles) are straight lines, tangents (regular) system of circumferences on the hyperbolic plane 

(see Fig.4). Obviously, the reflections in the sides of the straight lines of this multilateral can cover the 

whole (entire) hyperbolic plane  (Fig. 4). To facilitate the understanding and further description, we 

agree to call the sides of the six-rectangle (right angled hexagon) black, if they are obtained from 

boundary geodesic circles of pants, and the other three sides we agree to consider painted in different 

colours (for example, red, blue and green straight). Exactly, this figure is also called in the work as a 

multilateral (in contrast to the polygon, the figure has no vertices and angles, hence its name - the 

multilateral). The study of the behavior of the geodesics in this paper is being carried out gradually, in 

order of collecting the surface, the reverse order of cutting the surface into fragments (i.e. pants). The 

surface is cut into typical pieces (for example, on pants or their degenerations, on right hexagons, etc.) 

and the question of the behavior of the geodesics for each piece is solved on it, and then the result of 

the investigation returns (by gluing) onto the original surface. 

 
Fig. 4 A generalized regular multilateral, described near the regular system of congruent 

circumferences. 

With the help of these multilaterals, it is possible to determine the nature of the behavior of the 

geodesics on the surface, not more complicated than how Artin studied the global behavior of 

geodesics on hyperbolic surfaces by cleverly encoding geodesics using continued fractions. Any 

given hyperbolic (closed, i.e., ordinary) surface can be cut into pants and the question is how, when 

gluing such pants, connect them on a common surface. But it may seem (when gluing of the surface 

from the pants is not finished yet) that the surface of genus g has also n components (the surface has 

a geodesic boundary).  And, going further, we notice that the boundary of the surface can degenerate: 

transform into cuspidal ends (cusps) and into conical points. Thus, we arrive at the most general case, 

the surfaces of the signature (g, n, k), the preliminary investigation of the behaviour of the geodesics 
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Fig. 3 Orthogonal section of a triangle and obtaining a hexagon with right angles 
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on these pieces. To summarize what has been said, we can conclude that a concrete method of 

investigating the behavior of the geodesics on hyperbolic 2-manifolds is based on the idea of 

preliminary research on these pieces (on the set of hyperbolic pants and their degenerations), in the 

subsequent consolidation of research results using the method proposed in this paper (sometimes 

called the method of generalized coloured multilaterals). The main purpose of this article is to indicate 

an algorithm (the construction of a practical approach) that allows determine the behavior of this 

geodesic on hyperbolic manifolds. Also the aim is to obtain new results in following areas: a) the 

solution of the question of the qualitative behavior of the geodesics in general (if a point and the 

direction of the tangent at that point are given) on 2-dimensional hyperbolic manifolds; b) a new 

method for solving the problem of the behavior of the geodesics on hyperbolic manifolds is developed 

- the method of colour multilaterals; c) with the help of this technique, the question of the qualitative 

behavior of the geodesics in general on hyperbolic 2-manifolds is solved. In more detail, the following 

main results of the study were obtained. A new constructive method for investigating the global 

behaviour of the geodesics on hyperbolic manifolds (the method of colour multilaterals) is given in 

this paper. The solution is based on the study of the behavior of the geodesics on the simplest 

hyperbolic surfaces (hyperbolic pants, degenerate hyperbolic pants, thrice-punctured sphere, etc.), 

some of which have long attracted the attention of geometers. In this paper is used the Këbe method 

of geodesic cutting of hyperbolic 2-manifolds into hyperbolic pants with a nonempty boundary 

(edge). In hyperbolic geometry, hyperbolic right angled hexagons are used as a tool for analysing the 

behaviour of the geodesic (and surfaces). The discrete group  is defined in the usual way via its 

fundamental domain  (glued from the proper number of right angled hexagons). Hyperbolic pants 

are the only compact hyperbolic surfaces with a geodesic boundary that can’t be simplified by cutting 

along closed simple geodesics. In fact, any pants with boundary geodesics are uniquely determined 

by the length of their boundary geodesics, because any hyperbolic right angled hexagon is uniquely 

defined by three alternating (non-adjacent) lengths of sides that can be arbitrarily set. We consider 

the universal covering of hyperbolic pants (the hyperbolic plane ) and lines that cover a given 

geodesic. Let it be on  a right angled hexagon  and let  denote its image under reflection 

from the side of  (Fig. 3). When identifying the corresponding sides  and , as well as  

and  of this right angled geodesic  octagon (Fig. 5), we obtain hyperbolic pants P with boundaries 

. As the fundamental region for the corresponding pants P we choose this hyperbolic right 

angled octagon (the double of a right angled  hexagon  in the plane ). 

 

 
Fig. 5 The hexagon  and its reflection at the side is a symmetrical hexagon  

 

This geodesic right angled octagon is the fundamental domain of the group 

generated by hyperbolic translations , (the pants can be obtained by factorizing the hyperbolic 

plane  by a discrete co-compact group  generated by translations  , where the 
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translation  is determined by the vector , ).  To describe the behaviour of an arbitrarily 

given (some) geodesic on hyperbolic pants emanating from the point  in a given direction, we need 

to consider how the direct, covering this geodesic, behaves on the universal cover of these pants. In 

other words, how this straight line is located relative to the sides of  of the hyperbolic right 

angled octagon (the so-called "colour" straight - blue, green, red). Walking along hyperbolic octagon, 

we can’t cross the boundary components  (" coloured circumferences "), but we can pass 

through the sides , ,  of a hyperbolic hexagon (the so-called "black" sides). Along with the 

coloured sides, the categories of coloured angles are built. A pair of "adjacent" colour angles uniquely  

determines the next colour angle with the help of colour (coloured "straight lines - blue, green, red) 

or with the help of geodesic sides . Suppose, for the beginning, point  is fixed on the 

surface of hyperbolic pants, and we need to understand how the geodesic's behaviour depends on the 

direction (from the directing vector emanating from point ). In this situation each side determines 

the angle of its colour with the vertex in the point  (and the sides parallel to the colour side) and in 

each category of angles it is uniquely  determined which sides , ,  (or "black" sides) it is 

necessary to cross to be within the scope of the corresponding colour side. Thus, on hyperbolic pants, 

the problem of the behaviour of any geodesic passing through a fixed point is uniquely solvable by 

the algorithm for constructing the corresponding system of coloured angles, and by the sides parallel 

to the considered side of the generalized multilateral obtained from a right angled hexagon. Thus, on 

hyperbolic pants is the problem of the behaviour of any geodesic that passes through a fixed point 

and is uniquely solvable with the help of the algorithm for constructing the corresponding system of 

coloured angles, and by the sides parallel to the considered side of the generalized multilateral, 

obtained from a right angled hexagon. Further, the concept of the category of angles is introduced, 

and with the help of these categories an algorithm for recognizing the type of a geodesic is given.  

Main results of the present work are as follows. In the work is given a new constructive method 

(a new approach) for solving the problem of the behavior of geodesic on a arbitrary hyperbolic 

surfaces of signature , i.e., method allowing to answer the question about the structure on 

the global of examined geodesic at its indefinitely extension (geodesics can be extended indefinitely) 

on both directions. Such a compressed formulated result can be disclosed as follows. For this purpose, 

with the help of proposed practical approach at first are studied geodesics at the simplest hyperbolic 

manifolds: 1) it is solved the problem of the behavior of geodesic on the simplest  hyperbolic surfaces 

(hyperbolic horn; hyperbolic cylinder; parabolic horn (cusp)); 2) it is investigated and described the 

behavior of the geodesic lines on hyperbolic surfaces of signature (0,3) (hyperbolic pants); it is found 

special case: behavior of ortho-boundary geodesics and orthogeodesics, and their general structure, 

i.e., it is obtained classification of geodesics launched (emanating) normally from the point of 

geodesic boundary of pants (see Fig. 5). Is said to be orthogeodesic - a geodesic segment 

perpendicular to the boundary at its initial and terminal points.  
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Fig. 5 Pants P with spiraling geodesics 

 

Investigation of behavior of the geodesics on the listed above surfaces, allowed finding answer 

of assigned task in general case: 3) it is investigated and found behavior of the geodesics on compact 

closed hyperbolic surface without boundaries (borders), (general case).  As specific problems are 

solved the following tasks: 4) there are studied geodesics on hyperbolic surface of genus g and  n 

(non-puncture) boundary holes (geodesic boundaries); it is given characteristics of all possible types 

of geodesic launched orthogonally from the point of geodesic boundary of the surface, it is described 

their behavior and general structure; are studied intervals (horocyclic segments) formed by simple - 

normal geodesics, launched  from the selected conical point, cusp or boundary geodesics on 

hyperbolic surface. Also, are solved the following problems: 5) a) there are  given the characteristics 

and there are studied properties and types of the geodesics on hyperbolic 1- punctured torus; b) there 

are studied the geodesics on generalized hyperbolic pants (a sphere with b  boundary components and  

p cusps,  with b+p =3 ) and on hyperbolic thrice punctured sphere; c) it is proved that in two dimension 

the only such manifold not containing a  simple closed geodesic is the  hyperbolic thrice punctured 

sphere. But it has six simple complete geodesics.         

                           

The results of the preceding paragraphs have allowed solving the problem of the behavior of 

geodesic in general case: 6) there are described the geodesics for any (oriented) punctured hyperbolic 

surface M with g genera and  k punctures. The proposed new method of the investigation of behavior 

of the geodesics allowed finally finding the answer of assigned task (behavior of geodesic) and in the 

most general case: 7) it is solved the question about  the  qualitative behavior of the geodesics for any 

hyperbolic surface of signature   (with genus g, k punctures and n  geodesic boundaries). 

 

REFERENCES: 

 
[1] BALCAN V. The global behavior of geodesics on hyperbolic manifold. In: Proceedings of the Fourth Conf. 

of Math. Soc. of Moldova. Chișinău, 2017, pp.189-192. 

 

  

 kng ,,




