Please use this identifier to cite or link to this item: https://irek.ase.md:443/xmlui/handle/123456789/4343
Title: Research of Risk Management Assessment Methods within the Customs Service Based on Big Data Analysis
Other Titles: Cercetarea metodelor de evaluare a managementului riscurilor în cadrul serviciului vamal bazate pe analiza a Big Data
Authors: Gutium, Mircea
Keywords: customs service
risk management
machine learning
big data
national security
Issue Date: Oct-2024
Publisher: Presa Universitară Clujeană
Abstract: In the digital age, the abundance of data presents new avenues for risk assessment in various sectors. This article delves into risk assessment methods within the Customs Service that leverage big data analytics, aiming to provide a more comprehensive understanding of risks. It reviews machine learning techniques, predictive analytics algorithms, and neural network models, highlighting their strengths and limitations. The study also addresses the ethical aspects and challenges related to the confidentiality of commercial or personal data and the influence of these technologies on decision-making. The findings underscore the necessity for robust regulatory frameworks and transparent practices to harness the benefits of big data analytics in Customs risk management while safeguarding business-critical data. JEL: C55, G32
Description: GUTIUM, Mircea. Research of Risk Management Assessment Methods within the Customs Service Based on Big Data Analysis = Cercetarea metodelor de evaluare a managementului riscurilor în cadrul serviciului vamal bazate pe analiza a Big Data. In: Dezvoltarea economico-socială durabilă a Euroregiunilor și a zonelor transfrontaliere, conferința internațională, a XX-a ediție, 25-26 octombrie 2024. Iași: Presa Universitară Clujeană, 2025, vol. XLVIII, pp. 137-141. ISSN 2971-8740.
URI: https://irek.ase.md:443/xmlui/handle/123456789/4343
ISSN: 2971-8740
Appears in Collections:2.Articole

Files in This Item:
File Description SizeFormat 
Dezvoltarea economico sociala durabila a euroregiunilor_Gutium_страницы137-141.pdf414.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.