dc.contributor.author |
Prisăcaru, Anatolie
|
|
dc.date.accessioned |
2022-05-04T11:15:13Z |
|
dc.date.available |
2022-05-04T11:15:13Z |
|
dc.date.issued |
2022 |
|
dc.identifier.uri |
https://irek.ase.md:443/xmlui/handle/123456789/2068 |
|
dc.description |
PRISĂCARU, Anatolie. The problem of representation of a poligonal domain as a union of the minimum number of convex poligons = Problema reprezentării domeniilor poligonale ca reuniune a unui număr minim de poligoane convexe. In: 30 years of economic reforms in the Republic of Moldova: economic progress via innovation and competitiveness [online]: The International Scientific Conference dedicated to the 30th Anniversary of the establishment of the Academy of Economic Studies of Moldova, September 24th-25th, 2021, Chisinau. Chișinău: ASEM, 2022, vol. 3, pp. 199-207. ISBN 978-9975-155-66-3. |
en_US |
dc.description.abstract |
The problem of partition of a poligonal domain with arbitrary holes into a minimal number of convex parts is solved. It is show that this minimal number equals m+c-h-e, where m, c, h and e are respectively the measure of local nonconvexity, the number of connected components, the number of formal holes, and the effective number of region. DOI: https://doi.org/10.53486/9789975155663.23; CZU: 514.116; JEL: C 65. |
en_US |
dc.language.iso |
other |
en_US |
dc.publisher |
ASEM |
en_US |
dc.subject |
metric |
en_US |
dc.subject |
metric space |
en_US |
dc.subject |
d-segment |
en_US |
dc.subject |
convex set |
en_US |
dc.subject |
convex hull |
en_US |
dc.subject |
graph |
en_US |
dc.subject |
k-partite graph |
en_US |
dc.title |
The problem of representation of a poligonal domain as a union of the minimum number of convex poligons |
en_US |
dc.title.alternative |
Problema reprezentării domeniilor poligonale ca reuniune a unui număr minim de poligoane convexe |
en_US |
dc.type |
Article |
en_US |