
Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 105

CONSISTENCY OF DATA BASES AND SECURITY OF TRANSACTIONS

IN E-COMMERCE APPLICATIONS

Costin Radu BOLDEA
PhD, Associate Professor, University of Craiova, ROMANIA

e-mail: cboldea@inf.ucv.ro

Bogdan Ion BOLDEA
PhD, Associate Professor, West University of Timisoara, ROMANIA

e-mail: bogdan.boldea@e-uvt.ro

Abstract
This paper compares various anomalies of updating transaction in distributed databases for online business applications,

and examines the access constraints needed to maintain consistent data in terms of concurrent access, as well as some

methods to ensure data integrity and security, especially the appearance of Phantom or Dead-lock phenomena. The paper

also presents the result of an experiment to identify the occurrence of these undesirable phenomena.

Keywords: Concurrent transactions, Database management systems, Phantoms, Locking, Data Consistency.

JEL Classification: C80

INTRODUCTION

Data is a company's most valuable asset today, not its offices or production facilities.

Regardless of the nature of the company - be it a private enterprise, an educational institution or a

state-owned company - its history, current status of assets and liabilities, as well as all information

related to the production or distribution process are recorded in internal databases or public. If this

data is out of date with the status of the company or if the data is inconsistent with themselves, their

usefulness is questionable and there are likely to be problems.

Application programs update data according to changes in enterprise status. Application

system components share the same dataset and usually, but not necessarily, share the same computing

environment. Today, application systems use many platforms: desktop microcomputers, file servers,

and mainframes. With the advent of web-based cooperative computing, sometimes we don't know or

don't even care where the app is running. Although each platform brings its unique benefits and

challenges to data management science, the fundamental concepts of database management software

have remained unchanged for more than three decades [3], [8].

Database Management Systems (DBMS) were created to provide consistency and consistency

to application systems that process large data files. The organization and management of data in a

database must meet five essential conditions [4], [6]:

 A good representation of the surrounding reality, ie the database must always provide a true

picture of reality through reliable and up-to-date information;

 A non-redundancy of information, the information contained in the database must be unique

from a semantic and physical point of view;

 An independence of the data from the processing; the data is a true picture of the real world,

the application programs must be designed in relation to this data structure;

 Data security and confidentiality; data security must be ensured through physical procedures,

and confidentiality through procedures that prevent access by unauthorized users;

 Performance in operation, any processing request must be met in a time convenient to the

user, which involves the use of optimization techniques to reduce processing time.

However, the widespread use of the Internet as a means of communication and access to a

mailto:cboldea@inf.ucv.ro
mailto:bogdan.boldea@e-uvt.ro

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 106

company's data has led to various security or consistency issues due to the massive use of competition,

representing the simultaneous access of several users or programmers to a database, and of the

distribution of data over several storage areas, possibly at great distances from each other. Ensuring

the integrity of the database, its consistency and the security of access to it thus becomes a priority

for any company that operates massive data and information, whether they are commercial or

personal.

This paper presents various deficient aspects of competitive access to distributed databases,

focusing in the end on combating phenomena such as Phantom (false data) or Dead Lock (inter-

blockages) that may occur during the use of large databases. The organization of the article is as

follows: Section 2 describes the various transaction control anomalies in distributed database

databases for business applications; Section 3 presents concrete examples of the occurrence of these

anomalies, followed by an Experimental Section, analyzing cases where ghosts or blockages occur

during the execution of competing transactions. Last Section concludes the paper.

1. DISTRIBUTED DATABASE TRANSACTIONS AND CONTROL ANOMALIES

Commercial databases were originally created as a form of storage of information related to

marketed products and potential customers or suppliers of the company. However, the explosive

development of e-commerce has generated the need to store a very large amount of information,

possibly shared and updated from separate locations, which has led to the emergence of Distributed

Databases (DDB). The primary rationale for a distributed database is as a decentralized enterprise

that has to share information between different distributed parties. Distributed operations can lead to

the following situations:

• Data can be generated in several parts, requiring fast local access and extracurricular data

summaries.

• Data can be generated centrally, requiring fast remote access. Both the exchange and remote

users must update the data.

• Data can be generated in many places, requiring quick access to both local and remotely

stored data.

In all these situations, Distributed Database can lead to better performance than centralizing

it in one location. This is because distribution reduces the volume of data communications, with most

accesses being local, and reduces the amount of data stored on any given machine, reducing capacity

requirements and improving local responsibilities.

There is only one definition of data elements in a given database management system

(DBMS). This definition is given by the database schema of a DBMS. In general, a distinction is

made between the programmer's view of the database, which defines its logical schema, and the

computer's "vision" of the database, called the physical schema. The database management system

connects the two schemes.

The purpose of database management systems is to provide quick and easy access to large

amounts of data, but to do so in ways that ensure that the integrity of the database is always maintained

([3], [7]). This means that a database management system must allow users to define and manage

rules or constraints applied to certain critical data elements. Defining and enforcing data security and

integrity constraints is essential to the usefulness of any database management system.

An important component of a database management system is its transaction manager. A

transaction manager monitors data object updates to ensure that the database is always in a consistent

state.

Transactional mechanisms are not new in the world of databases. In the 1970s, just a few

hundred miles away, IBM Laboratories in San Jose and the University of Berkeley developed the first

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 107

relational systems, System R and Ingres, in parallel, both of which included some form of

transactional processing. Since then, all major DBMSs have incorporated trading mechanisms.

The purpose of transaction processing is to maintain the integrity of the database. The integrity

(or consistency) of the database is a notion that is quite difficult to define rigorously. For the purposes

of this presentation, it is sufficient to admit that the database is consistent if it complies with all formal

rules of integrity that have been imposed on it and, in addition, the information it contains is assumed

to be correct.

However, it should be noted that transactional mechanisms are not the only ones that deal with

maintaining integrity. Specifically, transaction processing relates to only two aspects:

 Database recovery after an incident - is based on the inclusion of a certain level of redundancy

by storing the history of transactions in a so-called "log". Although this is not the subject of

this article, some technical elements on journaling will continue to be used.

 Concurrency control - This is a critical issue in OLTP (On-Line Transaction Processing)

application systems. This is about “controlling” (and not necessarily “avoiding”) interference

because, although always undesirable, such interference may be allowed - in some well-

defined forms - to increase system performance. We will see how this is done later.

All issues discussed below relate to large, multi-user databases. We will consider especially

the case of relational systems (the vast majority of DBMSs are of this kind) although - except for the

aspects related to SQL - all the notions presented are applicable to any type of DBMS. Moreover,

most notions generally go beyond the scope of databases, being applicable to competing systems in

general.

Transactions generally consist of sequences of read and write operations to the database, along

with the necessary computational steps. However, the transaction reflects an atomic, indivisible

operation, which means that the sequence of operations must be executed in full. A component of the

DBMS called the transaction manager ensures compliance with this principle based on the two

fundamental operations: COMMIT - signals the successful conclusion of the transaction and causes

its consequences to continue; ROLLBACK - signals the failure of the transaction and causes the

cancellation of its consequences by restoring the status of the database before the start of the

transaction.

A transaction transforms the database from a consistent state to a consistent state. Because the

operations that make it up are performed sequentially, the database may not be in a consistent state

between the start of the transaction and the end of the transaction. For example, a transaction that

transfers the amount of 1000 lei from account A to account B, can be executed in two stages: first the

amount from account A is subtracted and then the amount is added to account B. between the two

stages the database does not reflects the reality, because the amount is neither in account A nor in

account B. As such, the access of another application to the two accounts between the two moments

of the transfer time must be restricted. As the database may be inconsistent during the execution of a

transaction, the result is that a transaction is not allowed to act on the intermediate results of another

transaction or, in other words, the transactions must be executed as if they were isolated.

Once a transaction has been made, the system assures the user that the updates that the

transaction has produced become persistent. This means that they will "survive" even if an accident

occurs immediately after committing, before the new values are physically written to disk. In practice,

this mechanism is implemented by logging data operations as well as transactions.

In the absence of competition control mechanisms, undesirable phenomena can occur, which

can lead to erroneous results or corruption of the consistency of the database. The literature ([1], [5],

[8]) generally mentions three typical anomalies that may occur: lost updating, improper reading, and

inconsistent analysis, all three of which result in the appearance of the Phantom data phenomenon-

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 108

erroneous data delivered to the end user, or inter-access lock (Dead Lock), in which case users lose

access to data.

2. PHANTOMS AND DEADLOCKS

To illustrate the appearance of "Phantoms" we will consider a seat reservation application for

an airline.

Consider two “Reservation” transactions, R1 and R2, which are performed concurrently and

which happen to refer to the same Z flight. We will disregard the insertion operation (which is not

important in this context) and use an alternative simplified notation as Write; because the selection is

- essentially - a reading, we will mark it with Read. The updeting, being a writing, we will also note

it with Write. A possible temporary sequence of events could be the following:

t1 – R1: Read Z
t2 – R2: Read Z
t3 – R1: Write z
t4 – R2: Write Z
...
The readings made by the two transactions will find the line in the same state. Assume that

the value of the " Seats_sold " field is 25. Both transactions will set their local variables Seats_sold

to 25. The update performed by transaction R1 at time t3 will change the value of the field to 26. At

time t4, transaction R2 also updates its own computer line Z, but placing the same value on the

Seats_sold field. Two reservations are made, but the number of seats sold increases by one unit. If

the number of requests is high, it is very likely that extra seats will be sold for that flight when the

central database is updated (COMMIT function).

The anomaly called "lost update" occurred due to the fact that transaction R2 based its update

from time t4 on a value read at time t2, which was meanwhile (at time t3) modified by transaction

R1 . Basically, the effect of the update made by transaction R1 at time t3 was lost. If transaction R2

read line Z after it was changed by R1, then R2 would have placed 27 in the Seats_sold field, which

would have been correct.

Another possible situation is when one of the transactions is canceled. Consider the following

scenario:

t1 – R2: Read Z
t2 – R2: Write Z
t3 – R1: Read Z
t4 – R2: ROLLBACK
t5 – R1: Write Z
...

In this situation, transaction R1 will have, in the local memory buffer, the result written by

transaction R2 at time t2. The cancellation of the transaction can occur for various reasons (assuming

that the addition of the line corresponding to the reservation in the RES table fails due to lack of disk

space) and will cause the Z line to return to the values before time t2. In this case, the R1 transaction

will base its future actions on values that practically never existed in the database! Suppose that at

time t1 the Seats_sold field of line Z contained the value 25. At time t2 this value is incremented so

that transaction R1 will read at time t3 the value 26. At time t4, transaction R2 is canceled and

consequently the value of field SOLD of line Z will be brought to the value it had before the start of

transaction R2, so 25. At time t5, the transaction will write in line Z the value 27. Which is obviously

wrong. The ”improper reading anomaly” (also called uncomitted dependency) stems from the fact

that transaction R1 read intermediate results of transaction R2.

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 109

To exemplify a third anomaly, called "inconsistent analysis" we will consider the CLIENT

table, on which two transactions are performed concurrently. Transaction T1 calculates the total

amount received from Z-passengers, while transaction T2 transfers a certain amount x from a C3

customer's account to a C1 customer's account (which happened to fly together). Normally the total

amount should be the same no matter which account x is in. Suppose that the balances of customers

C1, C2, and C3 are 200, 100, and 300, respectively, and x is 20.

But here's what can happen:

t1-T1: Read C1 (sold=200, total=200)
t2-T1: Read C2 (sold=100,total=300)
t3-T2: Read C3 (sold=300)
t4-T2: Write C3 (sold=280)
t5-T2: Read C1 (sold=200)
t6-T2: Write C1 (sold=220)
t7-T2: Commit
t8-T1: Read C3 (sold=280, total=580)
...

For customers C1, C2 and C3 the total should, of course, have been 600. It is obvious that the

total amount will be wrong. Unlike the other two cases presented, it is no longer a question of reading

updated values of a transaction before committing it. T1 does not read anything from the time the T2

transaction is started until it is completed. The problem is that T1 read one of the accounts before the

transfer and the other after the transfer.

In all three cases, the anomalies are caused by competitively executed interfaces between

transactions. A simple way to avoid these interfaces would be to fully execute the transactions in the

order they started. In this case, the performance of the data server would be unacceptably affected.

It's as if in a large self-service store, customers are left inside one by one, each after the previous

customer has finished all their shopping.

In order to best balance performance and security, database management system builders have

developed several ways in which interfaces between competing transactions can be controlled. The

most common is the mechanism based on locking portions of the database to prevent other

transactions from accessing that data during critical operations performed by a transaction. Another

method is based on applying "timestamps" to transactions and objects involved in transactions.

The idea behind the blocking technique is very simple: a transaction that has started operating

on some data must prohibit other transactions from accessing that data until the transaction is

completed. During this time, the data is "kept under lock and key". Data lock control is provided by

a component of the DBMS called the Lock Manager (LM). When a transaction T wants to access a

specific object in the database (reservation table for example), it will ask the LM component to block

the object. If the object is blocked by another transaction, transaction T will be put on hold until the

object is released.

Let's reanalyze the second anomaly presented above, inconsistent reading. At time t1

transaction R2 blocks line Z. At time t3, transaction t3, transaction R1 in turn requests the blocking

of line Z but, since the line is already blocked by R2, it is put on hold. At time t4, transaction R2 ends

(via ROLLBACK) and releases the Z line. Only now does R1 get the Z line lock and can access it.

The data on which R1 is now acting is "clean" (the effects of transaction R2 have been canceled), so

the anomaly has been avoided.

It is easy to see that this way of locking is too restrictive. The anomalies appear only in the

case of data update, which suggests that refining the technique involves the use of two types of locks:

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 110

Share lock (Slock) - Allows you to read the object but forbids changing it, which is why it is

also called "read lock". Multiple transactions can block a particular object from being read at the same

time.

Exclusive lock or Xlock - Prevents other transactions from accessing the locked object, either

for reading or editing. Exclusive locking is more "strong" than shared locking, and is only used for

updates, which is why it is also called "write lock".

Let's review the "lost update" issue now, using shared and exclusive locks. At time t1

transaction R1 requests a shared block on the Z line and (assuming the line was not blocked for

writing by another transaction) obtains it. At time t2, transaction R2 also requires a shared Z-line lock

to read and update. It does not get blocked because the line is blocked for reading by transaction R2,

so it is put on hold. The R2 transaction also requires exclusive blocking and obviously does not obtain

it for similar reasons. None of the transactions can continue, as each is waiting for the other to release

the Z line.

This situation is called DeadLock. It is easy to verify that even in the situation of "inconsistent

analysis" an interlock will be reached. The result is that we solved the problem of anomalies but we

got another problem, that of interlocks. Solving the new problem involves two aspects: preventing

interlocks and detecting them.

The simplest method of detecting a deadlock situation is based on a time-out mechanism: if

the duration of the execution of a transaction exceeds a predetermined value, the system deduces that

an interlock has occurred. In practice, a mixture of techniques is most often used: an access protocol

is required to reduce the possibility of interlocking (without completely preventing it, but also without

significantly inhibiting competition), to implement a mechanism to detect the most interlocking usual,

leaving the others to a time-out mechanism. The actual settlement of an interlock is the determination

of a "victim" between the deadlock transaction and its cancellation (ROLLBACK). Once the interlock

has been removed, the transaction can be restarted.

The question is: how do we know if the concurrent execution of a group of transactions is

correct or not?

We call the planning (schedule) of a set of transactions an order of execution of the elementary

steps (LOCK, READ, WRITE, etc.) of all transactions. Ordering refers to steps in different

transactions, the relative order of the steps of the same transaction not being affected. A schedule is

called a serial if all the steps of any transaction appear in consecutive planning positions. Such

planning results in a serial execution, without interference of transactions. A schedule is called

serializable if and only if its effect is equivalent to that of a serial schedule. The implementation of

transactions through serializable planning prevents the occurrence of interlocking phenomena and

phantom data, ensuring the consistency and integrity of data.

 A step-by-step schedule of many transactions containing SLOCK (read lock) and XLOCK

(read-only lock) primitives can be serialized if the following rules are followed:

1. Any access unit blocked by a transaction must be unlocked by the same transaction before

it is completed.

2. No transaction attempts to unlock an access unit that it does not block in read or write-

write.

3. No transaction attempts to block an access unit that it blocks from reading (either read or

read-write).

4. No transaction attempts to block a read-write access unit that it blocks from read-write.

5. A transaction may request and obtain a read-write lock on an access unit that it is already

blocking from reading. This is possible because the read-write lock is more restrictive than the read-

only lock.

Example:

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 111

Let two transactions T1 and T2 be defined by the sequences

T1: READ A; A=A-10; WRITE A; READ B; B=B+10; WRITE B;
T2: READ B; B=B-20; WRITE B; READ C; C=C+20; WRITE C;

Any serial planning of T1 and T2 transactions has the property that the amount A + B + C remains

unchanged. Figures 1 and 2 show two different T1 and T2 transaction schedules: one serializable and

one non-serializable.

T1 T2

Figure 1. Serializable Transactions

T1 T2

Figure 2. NON-Serializable Transactions

After the execution of the non-serial planning, the amount A + B + C is increased by 20 due

to the loss of the update of B (WRITE B) from the transaction T2.

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 112

3. EXPERIMENT TO TEST THE APPEARANCE OF DEADLOCK

AND DATA-PHANTOM

In order to test the appearance of Phantom or DeadLock phenomena in ORACLE databases,

we performed several UPGRADE experiments at the READ COMMITTED and SERIALIZABLE

isolation level of PL // SQL [1], [2]. At the first isolation level, the transaction acquires read locks for

all retrieved data, but does not acquire interval locks, at the second the ORACLE server forces

serialization.

In the experiments we used an Employees table and two PL / SQL scripts that use cursors to

change employees' salaries by plus 10% and minus 10%, respectively (Figure 3), operated by two

different users.

Figure 3. Sample script for T1 first user transactions. The second user has

an equivalent block that reduces salaries by 10%

For both users, we locked the Employees table in sharing mode, using 1000 records per table.

The completely independent execution of the two scripts should have no effect on the data in the

table, only that we executed them in parallel. Since the data is read at the beginning of the transaction

by transferring it to the local memory buffer of the cursor, UPGRADE attempts result in phantom

effects in the first case at the "READ COMMITED" isolation level, and with execution error (at

“SERIALIZABLE” level), by the appearance of an interlock generated by forcing the table to lock in

shared mode.

Thus, for the first case of isolation level, the ROLLBACK operation, sporadic, resets the

current transaction for each of the two users, but the required update operations produce different

results in case of reading the data during the interspersed execution of the two blocks; on average,

between 600 and 700 Phantom results are obtained when a sequence of successive data displays is

introduced inside the LOOP loop.

Economic Security in the Context of

Sustainable Development
Online International Scientific-Practical Conference

2nd Edition, December 17, 2021, Chișinău, Moldova

Academy of Economic Studies of Moldova. ISBN 978-9975-155-73-1 (PDF). DOI 10.5281/zenodo.6255729 113

At the "SERIALIZABLE" isolation level, the appearance of DeadLock requires the

modification of the scripts by introducing an exception, otherwise the execution of the two will be

permanently blocked.

CONCLUSIONS
In large databases, the introduction of temporary access blocking clauses to a database

component and changing the settings of concurrent update transactions can reduce the occurrence of

phantom data phenomena, but induce the occurrence of update interlocks, which require interlocking.

important changes to auto-update scripts.

Given that these types of large databases are often used by commercial applications, and not

only, maintaining the consistency and integrity of data remains a necessary goal, without hindering

access to them, or blocking update applications.

BIBLIOGRAPHY

1. Boldea, C. R. (2020). Gestiunea Bazelor de date distribuite în ORACLE folosind PL/SQL- Joshua

Print, Vrsac.

2. Boboila, C. ; Boboila, S. & Lupsoiu, C. (2009). DELP System: Tracking Deadlocks and

Phantoms in Databases, Proceedings of the European Computing Conference, Vol. 2, p.319,

Springer-Verlag.

3. Lupsoiu,C. & Boldea, C.R. (2008). Modelarea şi proiectarea bazelor de date, Sitech, Craiova

4. Loshin, P. & Vacca, J. R. (2004). Electronic Commerce, 4th Edition, Charles River Media, Inc.,

10 Downer Avenue, Hingham, Massachusetts 02043.

5. Null, L. & Lobur, J. (2003). The Essentials of Computer Organization and Architecture, Jones

and Bartlett Publishers.

6. Moréjon, J. (1992). Principes et conception d’une base de données relationnelle, Les Editions

d’organisation, Paris, p. 20

7. Reynolds,J. (2004). The Complete E-Commerce Book-Design, Build & Maintain a Successful

Web-Based Business, Second Edition. CMP Books.

8. Silberschatz, A., Korth H. F. & S. Sudarshan, S. (2005). Database System Concepts, 5th Edition,

Boston, MA: McGraw-Hill.

